

KIT - Kalaignarkarunanidhi Institute of Technology

An Autonomous Institution

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai Accredited by NAAC with 'A' GRADE & NBA (AERO, CSE, ECE, EEE, MECH & MBA)

An ISO 9001 : 2015 Certified Institution, Coimbatore - 641 402.

Regulations, Curriculum & Syllabus - 2023

(For Students admitted from the Academic Year 2023-24 and onwards)

MASTER OF ENGINEERING DEGREE

IN

VLSI DESIGN

Department of Electronics and Communication Engineering PG – VLSI Design

Conceptual Framework	
(For Students admitted from	
theAcademicYear2023-24onwards)	

Semester	Level ofCour se	Hours /Week	No ofCours es	Range ofCredit s/ Courses	Total Credits
	PAR	TI			
A – Foundat	ion Courses				
I	Foundation Courses (FC)	4	1	4	4
B – Professi	onalCoreCourses				
ItoIII	Professional Core(PC)	3	11	2-3	31
C – Elective	Courses				
lltolll	ProfessionalElective(PE)	- 3	5	3	15
D – Project \	Nork				
III& IV	ProjectWork(PW)	12-24	2	6-12	18
	PARTII- CareerEnhancem	entCourse	s(CEC)		
I	ArticleWritingandSeminar	2		1	1
	Total Credit				69

 \mathcal{N} 1 5

Approved by BoS Chairman

	Curriculum and Sche									
	(For Students admitted from the Acad	lemic Yea	r 2023	-24 a	and o	onwa	rds)			
	Seme	ester I								
Course Cod	Course Name	СТ	Ins	truc	iona	al Ho	urs	A	ssessn	nent
			CP	L	Т	Ρ	С	CIA	ESE	Total
Theory / The	ory with Practical									
M23MAT10	Graph Theory and Optimization Techniques	FC	4	3	1	0	4	40	60	100
M23VDT10 ²	CMOS Digital VLSI Design	PC	3	3	0	0	3	40	60	100
M23VDT102	FPGA Based System Design	PC	3	3	0	0	3	40	60	100
M23VDT103	CAD for VLSI Circuits	PC	3	3	0	0	3	40	60	100
M23VDT104	Analog IC Design	PC	3	3	0	0	3	40	60	100
M23CST10 ²	Research methodology and IPR	PC	3	3	0	0	3	40	60	100
Practical										
M23VDP10 ²	VLSI Design Laboratory - I	PC	4	0	0	4	2	60	40	100
Total credits to be earned 21										

	Semeste	er II								
Course Code	Course Name	СТ	l	nstru H	ucti our:	ona s		Assessment		
			СР	L	Τ	Ρ	С	CIA	ESE	Total
Theory / Theory	y with Practical									
M23VDT201	Device Modeling	PC	3	3	0	0	3	40	60	100
M23VDT202	DSP Structures for VLSI	PC	3	3	0	0	3	40	60	100
M23VDT203	Low Power VLSI Design	PC	3	3	0	0	3	40	60	100
	Professional Elective-I	PE	3	3	0	0	3	40	60	100
	Professional Elective-II	PE	3	3	0	0	3	40	60	100
	Professional Elective -III	PE	3	3	0	0	3	40	60	100
Practical							-			
M23VDP201	VLSI Design Laboratory - II	PC	4	0	0	4	2	60	40	100
M23CEP201	Article Writing and Seminar	CEC	2	0	0	2	1	100	-	100
	Total credits to be earned									

ん 1 b

Approved by BoS Chairman

	Semester III									
Course Code	Course Name	СТ	Ins	truc	tiona	al Hou	irs	Assessment		
Course Coue			СР	L	Τ	Ρ	С	CIA	ESE	Total
Theory / Theor	ry with Practical									
M23VDT301	Testing of VLSI Circuits	PC	3	3	0	3	3	40	60	100
	Professional Elective -IV	PE	3	3	0	3	3	40	60	100
	Professional Elective-V	PE	3	3	0	3	3	40	60	100
Practical			_				-			
M23VDP301	Project Work (Phase I)	PW	12		0	12	6	40	60	100
	Total credits to be earned						15			

	Semester IV										
Course	Course Name		Ins	struc	tion	al Hou	urs	As	sessn	nent	
Code		0.	СР	L	Т	Ρ	С	CIA	ESE	Total	
Practical											
M23VDP401	Project Work (Phase II)	PW	24	0	0	24	12	40	60	100	
	Total credits to be earned						12				

 \mathcal{N} d 5

Approved by BoS Chairman

FOUNDATIONCOURSES(FC)										
Course Code	CT Instructional Hours Asso							ssessn	nent	
Course Coue		01	СР	L	Т	Ρ	С	CIA	ESE	Total
M23MAT105	Graph Theory and Optimization Techniques	FC	4	3	1	0	4	40	60	100

	PROFESSION	IALCOR	E(PC)							
Course Code	Course Name	СТ	Ins	truct	iona	al Ho	urs	A	ssessm	nent
Course Coue		•	СР	L	Τ	Ρ	С	CIA	ESE	Total
M23VDT101	CMOS Digital VLSI Design	PC	3	3	0	0	3	40	60	100
M23VDT102	FPGA Based System Design	PC	3	3	0	0	3	40	60	100
M23VDT103	CAD for VLSI Circuits	PC	3	3	0	0	3	40	60	100
M23VDT104	Analog IC Design	PC	3	3	0	0	3	40	60	100
M23CST101	Research Methodology and IPR	PC	3	3	0	0	3	40	60	100
M23VDP101	VLSI Design Laboratory - 1	PC	4	0	0	4	2	60	40	100
M23VDT201	Device Modeling	PC	3	3	0	0	3	40	60	100
M23VDT202	DSP Structures for VLSI	PC	3	3	0	0	3	40	60	100
M23VDT203	Low Power VLSI Design	PC	3	3	0	0	3	40	60	100
M23VDP201	VLSI Design Laboratory - II	PC	4	0	0	4	2	60	40	100
M23VDT301	Testing of VLSI Circuits	PC	3	3	0	0	3	40	60	100

 \mathcal{N} d 6

Approved by BoS Chairman

PROFESSIONALELECTIVE (PE)													
	SEMESTER – II												
ELECTIVE – I													
Course Code	e Course Name CT Instructional Hours						ours	A	ssessment				
			CP	L	Т	Ρ	С	CIA	ESE	Total			
M23VDT201	VLSI Technology	PE	3	3	0	0	3	40	60	100			
M23AEE101	Computer Architecture and Parallel Processing	PE	3	3	0	0	3	40	60	100			
M23AET301	Advanced Microprocessors and Microcontrollers Architecture	PE	3	3	0	0	3	40	60	100			
M23AEE103	Neural Networks and Applications	PE	3	3	0	0	3	40	60	100			
	SEMES	TER – II											
	ELECT	IVE – II											
M23VDE202	DSP Integrated Circuits	PE	3	3	0	0	3	40	60	100			
M23VDE203	Nano Electronics	PE	3	3	0	0	3	40	60	100			
M23AEE201	High Performance Networks	PE	3	3	0	0	3	40	60	100			
M23AEE202	Wireless Adhoc and Sensor Networks	PE	3	3	0	0	3	40	60	100			

	SEMESTER – II										
	ELECT	VE – III									
Course Code	Course Name	СТ	Inst	truct	iona	l Ho	urs	A	ssessm	nent	
Course Coue		•	СР	L	Т	Ρ	С	CIA	ESE	Total	
M23VDE204	System on Chip Design	PE	3	3	0	0	3	40	60	100	
M23AET201	Soft Computing and Optimization Techniques	PE	3	3	0	0	3	40	60	100	
M23VDE205	Reconfigurable Architectures	PE	3	3	0	0	3	40	60	100	
M23VDE206	Signal Integrity for High Speed Networks	PE	3	3	0	0	3	40	60	100	

 \mathcal{N} d 5

Approved by BoS Chairman

SEMESTER – III											
ELECTIVE – IV											
Course Code	Course Code Course Name CT Instructional Hours Assessment										
Course Code		0.	СР	L	Т	Ρ	С	CIA	ESE	Total	
M23VDE301	Principles of Remote Sensing	PE	3	3	0	0	3	40	60	100	
M23AEE303	Advanced Digital Image Processing	PE	3	3	0	0	3	40	60	100	
M23AEE304	Pattern Recognition	PE	3	3	0	0	3	40	60	100	
M23AET202	Embedded System Design	PE	3	3	0	0	3	40	60	100	

	SEMESTER – III										
ELECTIVE – V											
Course Code	urse Code Course Name CT Instructional Hours Assessment										
			CP	L	Т	Ρ	С	CIA	ESE	Total	
M23VDE302	MEMS and NEMS	PE	3	3	0	0	3	40	60	100	
M23AET203	Hardware-Software Co-Design	PE	3	3	0	0	3	40	60	100	
M23AEE205	Robotics	PE	3	3	0	0	3	40	60	100	
M23VDE306	Machine Learning and Algorithm design	PE	3	3	0	0	3	40	60	100	
	PROJEC	r work	(PW)								
Course Code	Course Name	СТ	Inst	truct	iona	l Hou	irs	A	ssessm	nent	
			СР	L	Т	Ρ	С	CIA	ESE	Total	
M23VDP301	Project Work(Phase I)	PW	12	0	0	12	6	40	60	100	
M23VDP401	Project Work(Phase II)	PW	24	0	0	24	12	40	60	100	

CAREER ENHANCEMENT COURSE(CEC)										
Course Code	Course Name	СТ	T Instructional Hours Assessmen			nent				
		•••	СР	L	Т	Ρ	С	CIA	ESE	Total
M23CEP201	Article Writing and Seminar	CEC	2	0	0	2	1	100	-	100

 \mathcal{N} d 6

Approved by BoS Chairman

Approved by BoS Chairman

	M23VDT101-CMOS DIGITAL VLSI DESIGN (Common to VLSI & AE)	L	т	Р	С
IVI.C.		3	0	0	3

	Course Objectives
1.	To introduce the principle of operation of CMOS inverter.
2.	To study the concept of combinational logic circuits.
3.	To study the concept of sequential logic circuits.
4.	To introduce the architectures of VLSI system.
5.	To learn about the interconnect and clocking process.

UNIT-I MOS TRANSISTOR PRINCIPLES AND CMOS INVERTER

MOS(FET)TransistorCharacteristicunderStaticandDynamicConditions,MOSTransistor Secondary Effects, Process Variations, Technology Scaling, Internet Parameterand electrical wise models CMOS Inverter - Static Characteristic, Dynamic Characteristic,Power, Energy andEnergyDelay parameters.

UNIT-II	COMBINATIONAL LOGIC CIRCUITS	9
Propagation D	elays, Stick diagram, Layout diagrams, Examples of combinational logic design, E	lmore's
constant, Dynamic Logic Gates, Pass Transistor Logic, Power Dissipation, Low Power Design principles.		

UNIT-III

FIELD EFFECT TRANSISTORS

9

9

Drain and Transfer characteristics, Current equations, Pinch off voltage and significance of JFET, Drain and Transfer Characteristics, Threshold voltage, Channel length modulation of MOSFET, Comparison of MOSFET with JFET.

UNIT-IV

SPECIAL SEMICONDUCTOR DEVICES

9

MESFET, FINFET, PINFET, CNTFET, Schottky barrier diode, Zener diode, Varactor diode, Tunnel diode, LASER diode and LDR.

Approved by BoS Chairman

UNIT-V	POWER DEVICES AND DISPLAY DEVICES	9
UJT, SCR, Dia	ac, Triac, Power BJT, LED, LCD, Phototransistor, Opto Coupler, Solar cell.	

TotalInstructionalhours:45

	Course Outcomes:Students will be able to
CO1	Explain the V-I characteristic of PN diode
CO2	Describe the models and equivalence circuits of Bipolar Junction Transistors
CO3	Explain the characteristic of Field Effect Transistors
CO4	Operate the Special Semiconductor Devices such as MESFET, FINFET, LASER diode and LDR
CO5	Operate the basic electronic devices such as power Bipolar Transistors, Power control devices, LED, LCD and other Optoelectronic devices

	TextBooks
1.	Jan Rabaey, AnanthaChandrakasan, B Nikolic, "Digital Integrated Circuits: A Design Perspective". Second Edition, Feb 2003, Prentice Hall of India.
2.	Jacob Baker "CMOS: Circuit Design, Layout, and Simulation, Third Edition", Wiley IEEE Press 2010 3rd Edition.

	ReferenceBooks			
1.	M J Smith, "Application Specific Integrated Circuits", Addisson Wesley, 1997.			
2.	N.Weste, K. Eshraghian, "Principles of CMOS VLSI Design". Second Edition, 1993 Addision Wesley.			

 \mathcal{N} 10 St

Approved by BoS Chairman

M.E	M23VDT102 - FPGA BASED SYSTEM DESIGN		т	Ρ	С
	3	0	0	3	

Course Objectives		
1.	To understand the automated design flow for designs with FPGAs	
2.	To understand the Digital system design using HDL.	
3.	To understand the FPGA architecture, interconnect and technologies.	
4.	To analyze the area and power of the architectures	
5.	To understand configuring and implementing digital embedded system on FPGA.	

UNIT-I FPGA DESIGN FLOW AND ARCHITECTURES

Digital IC design flow-The role of FPGAs in digital design–Goals and techniques–Hierarchical design-CAD Tools. FPGA architectures–Configurable logic blocks-configurable I/O blocks– Programmable interconnect–clock circuitry–Xilinx FPGA architecture–Programming Technologies: Antifuse, SRAM, EPROM, EEPROM.

UNIT-II

VERILOG HDL

HDL overview-Modules and ports-compiler directives-data types-operands and operators-gate level modeling-data flow modeling-behavioral modeling-structural modeling-primitives-Tasks and functions-Writing test bench.

UNIT-III ARCHITECTING SPEED AND TIMING ISSUES

9

9

High Throughput - Low Latency - Timing - Add Register Layers, Parallel Structures, Flatten Logic Structures, Register Balancing, reorder Paths. CLOCKING AND METASTABILITY: Set up time hold time-setup time hold time violations-critical path-calculation of maximum clock frequency- meta stability - synchronizers design examples.

Approved by BoS Chairman

UNIT-IV ARCHITECTING AREA AND POWER 9

Architecting Area - Rolling Up the Pipeline - Control-Based Logic Reuse - Resource Sharing - Impact of Reset on Area - Resources Without Reset, Resources Without Set, Resources Without Asynchronous Reset, Resetting RAM, Utilizing Set/Reset Flip-Flop Pins. Architecting Power - Clock Control, Clock Skew, Managing Skew, Input Control, Reducing the Voltage Supply, Dual-Edge Triggered Flip- Flops, Modifying Terminations.

UNIT-V

EMBEDDED SYSTEM DESIGN WITH FPGA

Processors - Interfaces - Zynq System-on-chip Development - IP based Design - Hardware-Software Co-design for Zynq - Software Development Tools - Real-time Applications.

Total Instructional hours:45

9

	Course Outcomes: Students will be able to
CO1	Understand the design mode, method, criterion and steps of FPGA design
CO2	Design and model different digital circuits with HDL
CO3	Learning the performance specification of FPGA architecture
CO4	Analyze the architecture of FPGA
CO5	Understanding about the concept of Embedded system with FPGA

	Text Books
1.	Michael D. Ciletti, "Advanced Digital Design with the Verilog HDL", Second Edition, Pearson,
	2011.
2.	Steve Kilts, "Advanced FPGA Design Architecture, Implementation, and Optimization", First
	Edition, John Wiley & Sons, Inc., Hoboken, New Jersey, 2007.

Reference Books

- Crockett H. Louise, Ross A. Elliot, Martin A. Enderwitz, "The Zynq Book Embedded Processing with the ARM Cortex-A9 on the Xilinx Zynq-7000 All Programmable SoC", First Edition, Strathclyde Academic Media, 2014.
- 2. Charlet H. Roth, LizyKurian John, ByeongKil Lee, "Digital Systems Design using Verilog", Cengage Learning, 2016.
- 3. ZainalabedinNavabi, "Verilog Digital System Design", Second Edition, McGraw-Hill Education, 2005.
- Ming-Bo Lin, "Digital System Designs and Practices: Using Verilog HDL and FPGAs", First Edition, Wiley, 2008.

Approved by BoS Chairman

		L	Т	Р	С
M.E.	(Common to VLSI & AE)	3	0	0	3

	Course Objectives
1.	To introduce the VLSI Design methodologies.
2.	To study the algorithms related to placement and partitioning.
3.	To study the various routing and floor planning algorithms.
4.	To learn the synthesis processes understand VLSIdesign automation tools.
5.	To study the high level synthesis.

UNIT-I	

INTRODUCTION TO VLSI DESIGN FLOW

Introduction to VLSI Design methodologies, Basics of VLSI design automation tools, Algorithmic Graph Theory and Computational Complexity, Tractable and Intractable problems, General purpose methods for combinatorial optimization.

UNIT-II	LAYOUT, PLACEMENT AND PARTITIONING	9
Layout Compa	action, Design rules, Problem formulation, Algorithms for constraint graph com	paction,
Placement and	d partitioning, Circuit representation, Placement algorithms, Partitioning.	

L	JN	117	Г-	П	I

FLOOR PLANNING AND ROUTING

9

9

Floor planning concepts, Shape functions and floor plan sizing, Types of local routing problems, Area routing, Channel routing, Global routing, Algorithms for global routing.

UNIT-IV

SIMULATION AND LOGIC SYNTHESIS

9

Simulation, Gate-level modeling and simulation, Switch-level modeling and simulation, Combinational Logic Synthesis, Binary Decision Diagrams, Two Level Logic Synthesis.

Approved by BoS Chairman

UNIT-V					HIGH	LEVEL S	YNTHESIS				9
Hardware	models	for	high	level	synthesis,	internal	representation,	allocation,	assignme	ənt	and
scheduling,	schedul	ing a	algorith	ıms, A	ssignment p	vroblem, ł	ligh level transfo	rmations.			

Total Instructional hours:45

	Course Outcomes: Students will be able to
CO1	Outline the flow of VLSI design
CO2	Explain the algorithms related to placement and partitioning and layout rules
CO3	Outline floor planning and routing
CO4	Explain Simulation and Logic Synthesis
CO5	Examine the hardware models for high level synthesis

	Text Books
1.	N.A. Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwer Academic Publishers,
	2002.
2.	S.H. Gerez, "Algorithms for VLSI Design Automation", John Wiley & Sons, 2002.

	Reference Books
1.	Sadiq M. Sait, Habib Youssef, "VLSI Physical Design automation: Theory and Practice", World Scientific, 1999.
2.	StevenM.Rubin, "ComputerAidsfor VLSIDesign", AddisonWesleyPublishing, 1987.

3

Approved by BoS Chairman

M.E.		L	Т	Ρ	С
	M23VDT104-ANALOG IC DESIGN	3 0	0	3	

	Course Objectives
1.	To study MOS devices modeling and scaling effects.
2.	To familiarize the design of single stage and multistage MOS amplifier.
3.	To learn and analysis frequency responses of MOS amplifiers.
4.	To introduce the concept of current mirror.
5.	To study the OPAMP circuits.

UNIT-I	MOSFET METRICS			9		
Simple long	g channel MC	DSFET theory — S	PICE Models —	Technology tre	end, Need for	Analog
design - Sub-micron transistor theory, Short channel effects, Narrow width effect, Drain induced					nduced	
barrier	lowering,	Sub-threshold	conduction,	Reliability,	Digital r	netrics,
Analogmetrics,Smallsignalparameters,UnityGainFrequency,Miller [®] sapproximation.						

UNIT-II

SINGLE STAGE AND TWO STAGE AMPLIFIERS

Single Stage Amplifiers – Common source amplifier with resistive load, diode load, constant current load, Source degeneration Source follower, Input and output impedance, Common gate amplifier - Differential Amplifiers — differential and common mode response, Input swing, gain, diode load and constant current load - Basic Two Stage Amplifier, Cut-off frequency, poles and zeros.

UNIT-III

FREQUENCYRESPONSEOFSINGLESTAGEANDTWOSTAGE AMPLIFIERS

9

9

Frequency Response of Single Stage Amplifiers — Noise in Single stage Amplifiers —Stability and Frequency Compensation in Single stage Amplifiers, Frequency Response of Two Stage Amplifiers,—Noise in two stage Amplifiers— Stability, gain and phase margins, Frequency Compensation in two stage Amplifiers, Effect of loading in feedback networks.

Approved by BoS Chairman

UNIT-IV CURRENT MIRRORS AND REFERENCE CIRCUITS

Cascode, Negative feedback, Wilson, Regulated cascode, Bandgap voltage reference, Constant Gm biasing, supply and temperature independent reference, curvature compensation, trimming, Effect of transistor mismatch in analog design.

UNIT-V

OPAMPS

Gilbert cell and applications, Basic two stage OPAMP, two-pole system response, common mode and differential gain, Frequency response of OPAMP, CMFB circuits, slew rate, power supply rejection ratio,random offset, systematic offset, Noise, Output stage, OTA and OPAMP circuits-Low voltage OPAMP.

Total Instructional hours:45

9

9

Course Outcomes: Students will be able to		
CO1	Explain thebasicsofMOSFETcircuits	
CO2	Analyze theinputandoutputimpedances ofstageamplifiers	
CO3	Examine theStability,frequencyresponseand NoiseinMOS amplifiers	
CO4	Designthecurrentmirrorandreference circuits	
CO5	ExplainthecharacteristicsofOPAMP	

Text Books			
1. BehzadRazavi, "DesignofAnalogC	MOSIntegratedCircuits",McGrawHill,2000.		
2. PhilipE.Allen, "CMOSAnalogCircu	tDesign",OxfordUniversityPress,2013.		

Reference Books					
1.	Paul R.Gray,"Analysis and Design of Analog Integrated Circuits",Wiley Student edition,5 th edition, 2009.				
2.	R.Jacob Baker, "CMOS: Circuit Design, Layout, and Simulation", Wiley Student Edition,				
	2009.				

Approved by BoS Chairman

UNIT-I

		L	т	Р	С
M.E.	M23CST101 - RESEARCH METHODOLOGY AND IPR (Common to VLSI & AE)	3	0	0	3

Course Objectives

1. To impart knowledge on formulation of research problem, research methodology, ethics involved in doing research and importance of IPR protection.

RESEARCH DESIGN

Overview of research process and design, Use of Secondary and exploratory data to answer theresearch question, Qualitative research, Observation studies, Experiments and Surveys

Measurements, Measurement Scales, Questionnaires and Instruments, Sampling and methods.Data -Preparing, Exploring, examining and displaying.

UNIT-III DATA ANALYSIS AND REPORTING			

Overview of Multivariate analysis, Hypotheses testing and Measures of Association.Presenting Insights and findings using written reports and oral presentation.

UNIT-IVINTELLECTUAL PROPERTY RIGHTS9Intellectual Property – The concept of IPR, Evolution and development of concept of IPR, IPR
development process, Trade secrets, utility Models, IPR & Bio diversity, Role of WIPO and WTO in IPR
establishments, Right of Property, Common rules of IPR practices, Types and Features of IPR
Agreement, Trademark, Functions of UNESCO in IPR maintenance.9

Approved by BoS Chairman

UNIT-V	PATENTS	9
--------	---------	---

Patents – objectives and benefits of patent, Concept, features of patent, Inventive step, Specification, Types of patent application, process E-filling, Examination of patent, Grant of patent, Revocation, Equitable Assignments, Licences, Licensing of related patents, patent agents, Registration of patent agents

Total Instructional hours:45

	Course Outcomes: Students will be able to
CO1	Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
CO2	Understand research problem formulation & Analyze research related information and Follow research ethics.
CO3	Correlate the results of any research article with other published results. Write a review article in the field of engineering.
CO4	Appreciate the importance of IPR and protect their intellectual property. Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

	Text Books
1.	Cooper Donald R, Schindler Pamela S and Sharma JK, "Business Research Methods", Tata
	McGraw Hill Education, 11e (2012).
2.	Catherine J. Holland, "Intellectual property: Patents, Trademarks, Copyrights, Trade
	Secrets", Entrepreneur Press, 2007.

	Reference Books
1.	David Hunt, Long Nguyen, Matthew Rodgers, "Patent searching: tools & techniques", Wiley, 2007.
2.	The Institute of Company Secretaries of India, Statutory body under an Act of parliament,
	"Professional Programme Intellectual Property Rights, Law and practice", September 2013.

Approved by BoS Chairman

M.E	M23VDP101- VLSIDESIGNLABORATORY - I	L	т	Р	С
		0	0	4	2

	Course Objectives									
1.	The laboratory based study for the entire program is clubbed under three categories. One is the									
	FPGA based design methodology; the second is the simulation of analogbuilding blocks, and									
	analog and	I digital CA	AD desig	gn flow.	Experime	ents pertainir	ng to the	eformer two	o topics a	e covered
	in this lab c	ourse and	l those p	pertainin	g to the la	tter will beco	overedin	VLSIDesig	ınLabII.	
2	FPGAs are	e importar	it platfo	rm used	through	out the indu	stry bot	h in their o	own right	inbuilding
	complete systems. They are also used as validation/verification platforms priorto undertaking									
	cost and time intensive design and fabrication of custom VLSI designs. Starting from high level									
	design	entry	in	the	form	VHDL/Ver	rilog	codes,	the	students
	willbecarryi	ngoutcom	pleteha	rdwarele	evelFPGA	validationofi	mportan	tdigitalalgo	rithms. Ir	addition,
	exercises c	on the SPI	CE simu	lation o	f the basi	c CMOS ana	logbuild	ingblocksw	villbecarrie	edout.

List of Experiments						
Expt.No.	Description of the Experiments(Any 8 experiments)					
1.	Understanding Synthesis principles. Back annotation					
2.	Test vector generation and timing analysis of sequential and combinational logic design realized using HDL languages.					
3.	FPGA realtime programming and I/O interfacing					
4.	Interfacing with Memory modules in FPGA Boards.					
5.	Verification of design functionality implemented in FPGA by capturing the signal in DSO.					
6.	Real time application development					
7.	Design Entry Using VHDL or Verilog examples for Digital circuit descriptions using HDL					
	languages sequential, concurrent statements and structural description					
8.	Implementation of Traffic Light Controller using Verilog HDL					
9.	Implementation of UVM protocol using Verilog HDL					
	Total Instructional hours:60					

A 5

Approved by BoS Chairman

	Course Outcomes:Students will be able to							
CO1	Apply FPGA Concepts in realtime applications							
CO2	Examine the input output interfacing of FPGA							
CO3	Design a FPGA based model for signal processing							
C04	Develop a FPGA based real time model							
C05	Outline about HDL							

	LIST OF EQUIPMENT FOR A BATCHOF 30 STUDENTS								
SI.No.	Description of the Equipment	Quantity Required (Nos.)							
1.	Xilinx/ Equivalent EDA tool	15							
2.	FPGA-Altera /Sparton boards	14							
3.	Logic Analyzer	4							
4.	DSO	4							
5.	Interface Board-ADC	1							
6.	DAC	1							
7.	Motor Control	2							
8.	SPICE Software	15							

 \mathcal{M} 10 ABL

Approved by BoS Chairman

Semester II

Approved by BoS Chairman

	M23VDT201-DEVICE MODELLING (Common to VLSI & AE)	L	т	Р	С
M.E.		3	0	0	3

	Course Objectives
1.	To study the MOS capacitors and to model MOS Transistors.
2.	To learn about the MOSFET characteristics.
3.	To understand the various CMOS design parameters and their impact on performance of the device
Δ	To study the device level characteristics of B IT transistors
ч.	

UNIT-I	MOS CAPACITORS							
Surface	Potential: Accumulation, Depletion, and Inversion, Electrostatic Potential and Ch	narge						
Distribution	in Silicon, Capacitances in an MOS Structure, Polysilicon-Gate Work Function	and						
Depletion E	ffects, MOS under Non-equilibrium and Gated Diodes, Charge in Silicon Dioxide a	nd at						
the Silicon-	Oxide Interface, Effect of Interface Traps and Oxide Charge on Device Characteri	stics,						
High-Field	Effects, Impact ionization and Avalanche Breakdown, Band-to-Band Tunne	eling,						
Tunneling into and through Silicon Dioxide, Injection of Hot Carriers from Silicon into Silicon								
Dioxide, Hig	Dioxide, High-Field Effects in Gated Diodes, Dielectric Breakdown.							

UNIT-II			MOSFE		S			9
Long-Channel	MOSFETs,	Drain-Current	Model,	MOSFET	I–V	Characteristics,	Sub	threshold
Characteristics, Substrate Bias and Temperature Dependence of Threshold Voltage, MOSFET Char							Channel	
Mobility, MOSFET Capacitances and Inversion-Layer Capacitance Effect, Short-Channel MOSFET						OSFETs,		
Short-Channel	Effect, Vel	ocity Saturation	and H	igh-Field	Transp	ort Channel Le	ngth Mo	odulation,
Source-Drain	Series Resist	ance, MOSFET	Degradat	tion and B	reakdov	wn at High Fields		

 \mathcal{N} 10 201

Approved by BoS Chairman

UNIT-III	CMOS DEVICE DESIGN	
MOSFET S	caling, Constant-Field Scaling, Generalized Scaling, Non- scaling Effects, Th	reshold
Voltage, T	hreshold-Voltage Requirement, Channel Profile Design, Non-uniform I	Doping,
Quantum E	ffect on Threshold Voltage, Discrete Dopant Effects on Threshold Voltage, M	OSFET
Channel Le	ength, Various Definitions of Channel Length, Extraction of the Effective C	hannel
Length, Ph	ysical Meaning of Effective Channel Length, Extraction of Channel Length b	by C−V
Measureme	ents	

UNIT-IV

CMOS PERFORMANCE FACTORS

9

9

Basic CMOS Circuit Elements, CMOS Inverters, CMOS NAND and NOR Gates, Inverter and NAND Layouts, Parasitic Elements, Source–Drain Resistance, Parasitic Capacitances, Gate Resistance, Interconnect R and C, Sensitivity of CMOS Delay to Device Parameters, Propagation Delay and Delay Equation, Delay Sensitivity to Channel Width, Length, and Gate Oxide Thickness, Sensitivity of Delay to Power-Supply Voltage and Threshold Voltage, Sensitivity of Delay to Parasitic Resistance and Capacitance, Delay of Two-Way NAND and Body Effect, Performance Factors of Advanced CMOS Devices, MOSFETs in RF Circuits, Effect of Transport Parameters on CMOS Performance, Low-Temperature CMOS

UNIT-V

BIPOLAR DEVICES

N–P–N Transistors, Basic Operation of a Bipolar Transistor, Modifying the Simple Diode Theory for Describing Bipolar Transistors, Ideal Current–Voltage Characteristics, Collector Current, Base Current, Current Gains, Ideal IC–VCE Characteristics, Characteristics of a Typical n–p–n Transistor, Effect of Emitter and Base Series Resistances, Effect of Base– Collector Voltage on Collector Current, Collector Current Falloff at High Currents, Non- ideal Base Current at Low Currents, Bipolar Device Models for Circuit and Time-Dependent Analyses Basic dc Model, Basic ac Model, Small-Signal Equivalent-Circuit Model, Emitter Diffusion Capacitance, Charge-Control Analysis, Breakdown Voltages, Common-Base Current Gain in the Presence of Base–Collector Junction Avalanche, Saturation Currents in a Transistor, Relation Between BVCEO and BVCBO.

Total Instructional hours:45

Approved by BoS Chairman

	Course Outcomes: Students will be able to
C01	Outline the concept of MOS capacitors
CO2	Explain the operation of MOSFET with its characteristics
CO3	Design and model BJT device to desired specifications
CO4	Analyze the performance metrics of CMOS
CO5	Design and model BJT device to desired specifications

	Text Books
1.	BehzadRazavi, "Fundamentals of Micro electronics ",Wiley Student Edition, 2 nd Edition.
2.	JPCollinge, C.A. Collinge, "Physics of Semiconductor devices", Springer 2002 Edition.

	Reference Books
1. F	Yuan Taur and Tak H. Ning, "Fundamentals of Modern VLSI Devices", Cambridge University Press, Second Edition.

M 10 AB

Approved by BoS Chairman

	M23VDT202 - DSP STRUCTURES FOR VLSI	L T P	С		
M.E.		3	0	0	3

	CourseObjectives		
1.	To learn typical DSP algorithms.		
2.	To introduce techniques for altering the existing DSP structures to suit VLSI implementations.		
3.	To introduce efficient design of DSP architectures suitable for VLSI.		
4.	To study about numerical strength reduction.		
5.	To learn typical DSP algorithms.		

UNIT-I	PIPELINING AND PARALLEL PROCESSING OF DIGITAL FILTERS	9
Introduction to DSP systems – Typical DSP algorithms, Data flow and Dependence graphs		
- critical path, Loop bound, iteration bound, longest path matrix algorithm, Pipelining and		
Parallel processing of FIR filters, Pipelining and Parallel processing for low power.		

9

Retiming – definitions and properties, Unfolding – an algorithm for unfolding, properties of unfolding, sample period reduction and parallel processing application, Algorithmic strength reduction in filters and transforms – 2-parallel FIR filter, 2-parallel fast FIR filter, DCT architecture, rank-order filters, Odd-Even merge-sort architecture, parallel rank-order filters.

UNIT-III

ALGORITHIMIC STRENGTH REDUCTION -II

Fast convolution – Cook-Toom algorithm, modified Cook-Toom algorithm, Pipelined and parallel recursive filters – Look-Ahead pipelining in first-order IIR filters, Look-Ahead pipelining with powerof-2 decomposition, Clustered look-ahead pipelining, Parallel processing of IIR filters, combined pipelining and parallel processing of IIR filters.

Approved by BoS Chairman

UNIT-IV

BIT-LEVEL ARITHMETIC ARCHITECTURES

9

Bit-level arithmetic architectures — parallel multipliers with sign extension, parallel carry-ripple and carry-save multipliers, Design of Lyon's bit-serial multipliers using Horner's rule,bit-serial FIR filter, CSD representation, CSD multiplication using Horner's rule for precisionimprovement,Distributed ArithmeticfundamentalsandFIR filters.

UNIT-V

NUMERICAL STRENGTH REDUCTION, WAVE AND ASYNCHRONOUS PIPELINING

9

Numerical strength reduction – subexpression elimination, multiple constant multiplication, iterative matching, synchronous pipelining and clocking styles, clock skew in edge-triggered single phase clocking, two-phase clocking, wave pipelining. Asynchronous pipelining bundled data versus dual rail protocol.

Total Instructional hours:45

	Course Outcomes: Students will be able to
CO1	Outline the pipelining and parallel processing of DSP filters architectures
CO2	Explain the first level strength reduction techniques
CO3	Explain the first level strength reduction techniques
CO4	Analyze the various bit level arithmetic architectures
CO5	Explain the numerical strength reduction and pipelining process of filters

	Text Books
1.	Keshab K. Parhi, "VLSI Digital Signal Processing Systems, Design and implementation", Wiley, Inter science, 2007.
2.	U. Meyer – Baese, "Digital Signal Processing with Field Programmable Gate Arrays", Springer, Second Edition, 2004.

Approved by BoS Chairman

		L	т	Р	С
M.E.	M23VD1203-LOW POWER VLSI DESIGN	3	0	0	3

	CourseObjectives
1.	To identify sources of power in an IC.
2.	To identify the power reduction techniques based on technology independent and technology dependent.
3.	To study the low power CMOS circuits.
4.	To learn suitable techniques for power estimation.
5.	To design circuits with low power dissipation.

UNIT-I	POWER DISSIPATION IN CMOS			
Physics of power dissipation in CMOS FET devices — Hierarchy of limits of power —Sources				
of power consumption - Static Power Dissipation, Active Power Dissipation -Designing for				
Low Power, Circuit Techniques for Leakage Power Reduction – Basic principle of low power				
design				

UNIT-II

POWER OPTIMIZATION

Logic level power optimization – Circuit level low power design – Standard Adder Cells, CMOS Adders Architectures- Bi CMOS adders - Low Voltage Low Power Design Techniques, Current Mode Adders -Types of Multiplier Architectures, Braun, Booth and Wallace Tree Multipliers and their performance comparison.

UNIT-III

DESIGN OF LOW POWER CMOS CIRCUITS

9

9

Computer arithmetic techniques for low power system – low voltage low power static Random access and dynamic Random access memories – low power clock, Inter connect and layout design – Advanced techniques – Special techniques.

Approved by BoS Chairman

UNIT-IV POWER ESTIMATION		9
Power Estima	ation techniques – logic power estimation – Simulation power analysis – Prot	oabilistic
power analysi	S	

UNIT-V SYNTHESIS AND SOFTWARE DESIGN FOR LOW POWER		9	
Synthesis for low power – Behavioral level transform – software design for low power.			
	Total Instructional ho	ours:45	

Course Outcomes: Students will be able to		
CO1	Explain the basics and advanced techniques in low power design	
CO2	Explain the concept of power optimization	
CO3	Model the low power circuits	
CO4	Analyse the power estimation techniques	
CO5	Design the software models for low power	

Text Books			
1.	AbdelatifBelaouar, Mohamed.I.Elmasry,"Low power digital VLSI design",Kluwer,1995.		
2.	A.P.Chandrasekaran and R.W.Broadersen,"Low power digital CMOS design",Kluwer,1995.		

Reference Books				
1.	DimitriosSoudris,C.Pignet,CostasGoutis,"Designing CMOS Circuits for LowPower",Kluwer,2002.			
2.	GaryYeap,"Practical low power digital VLSI design", Kluwer, 1998.			

Ma b.

Approved by BoS Chairman

M.E	M23VDP201-VLSI DESIGN LABORATORY - II	L	т	Р	С
		0	0	4	2

Course Objectives 1. The focus of this course the CAD based VLSI design flow. The entire VLSI design industry makes use of this design flow in some form or the other. Proficiency and familiarity with the various stages of a typical state of this design flow is a prerequisite for any student who wishes to be a part of either the industry or the research in VLSI over one full semester exposure to various stages of a typical state of the art CAD VLSI tool be provided by various experiments designed to bring out the key aspects of simulation, and power and clock routing modules. ASIC RTL realization of an available open source MCU.

List of Experiments			
Expt.No.	Description of the Experiments (Any 8 experiments)		
1.	To synthesize and understand the Boolean optimization in synthesis.		
2.	Static timing analyses procedures and constraints.		
3.	Critical path considerations.		
4.	Scan chain insertion, Floor planning, Routing and Placement procedures.		
5.	Power planning, Layout generation, LVS, back annotation and Total power estimate.		
6.	Analog circuit simulation.		
7.	Simulation of logic gates, Current mirrors, Current sources and Differential amplifier in Spice.		
8.	Layout generations, LVS and Back annotation		
	TotalInstructionalhours:60		

Course Outcomes: Students will be able to			
CO1	Apply Boolean optimization concept		
CO2	Analyze the timing constraints and procedures		
CO3	Examine various floor planning, routing and placement procedures		
C04	Test the analog circuits.		
C05	Explain about layout generations		

Approved by BoS Chairman

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS				
SI.No.	Description of the Equipment	Quantity required(Nos.)		
1.	CADENCE / TANNER / Mentor Graphics /Synopses/SPICE Software	15		

 \mathcal{N} A 3

Approved by BoS Chairman

мг		L	Т	Р	С
	(Common to VLSI & AE)	0	0	2	1

Course Objectives

1. In this course, students will develop their scientific and technical reading and writing skills that they need to understand and construct research articles. A term paper requires a student to obtain information from a variety of sources (i.e., Journals, dictionaries, reference books) and then place it in logically developed ideas. The work involves the following steps:

- 1. Selecting a subject, narrowing the subject into a topic
- 2. Stating an objective.
- 3. Collecting the relevant bibliography(atleast15journalpapers)
- 4. Preparing a working outline.
- 5. Studying the papers and understanding the author's contributions and critically analyzing each paper.
- 6. Preparing a working outline
- 7. Linking the paper sand preparing a draft of the paper.
- 8. Preparing conclusions based on the reading of all the papers.
- 9. Writing the Final Paper and giving final Presentation

Approved by BoS Chairman

Activity	Instructions	Submi ssion Week	Evaluation Week
Selection of area of interest and Topic (Stating an Objective)	You are requested to select an area of interest, topic and state an objective	2 nd week	3% Based on clarity of thought, current relevance and clarity in writing
Collecting Information about your area & topic	 List 1 Special Interest Groups or professional society List 2 journals List 2 conferences, symposia or workshops List 1 thesis title List 3 web presences (mailing lists, forums, news sites) List 3 authors who publish regularly in your area Attach a call for Papers (CFP) from your area. 	3 rd week	3% (the selected information must be area specific and of international and national standard)

5

Approved by BoS Chairman

Collection of Journal papers in the topic in the context of the objective — collect 20 & then filter	You have to provide a complete list of references you will be using- Based on your objective - Search various digital libraries and Google Scholar When picking papers To read-try to: Pick papers that are Related to each other in Some ways and/or that Are in the same field so That you can write a Meaningful survey out of them, Favour papers from well-known journals and conferences, Favour "first" or "foundational" papers in the field (as indicated in other people"s survey paper),Favour more recent papers, Pick a recent survey of the field so you can quickly Gain an overview, Find relationships with respect to each other and to your topic area (classification Scheme / categorization) Mark in the hard copy of papers whether complete work or section/sections of the paper are being	4 th week	6% (the list of standard papers and reason for selection)
Reading and notes	consideredReading Paper Process For each paper form a Table answering the following questions: What is the main topic of the article?What was /were the main issue(s) the author said they want to discuss?Why did the author claim it was important?How does the work build on other"s work, in the author"s opinion?WhatSimplifying assumptions does the author claim to be making?What did the author do? How did the author claim they were going t o evaluate their work and compare it to	5 th week	8% (the table given should indicate your understanding of the paper and the evaluation is based on your Conclusions about each paper)

1 5

Approved by BoS Chairman

for first 5 papers	others? What did the author say were the limitations of their research? What did the author say were the important directions for future research? Conclude with limitations/issues not addressed by the paper(from the perspective of your survey)		
Reading and notes for next 5 papers	Repeat Reading Paper Process	6 th week	8% (the table given should indicate your understanding of the paper and the evaluation is based on your conclusions about each paper)
Reading and notes for final 5papers	Repeat Reading Paper Process	7 th week	8% (the table given should indicate your understanding of the paper and the evaluation is based on your conclusions about each paper)
Draft outline1 and Linking papers	Prepare a draft Outline, your survey goals, along with a classification /categorization diagram	8 th week	8%(this component will be evaluated based on the linking and Classification among the papers)
Abstract	Prepare a draft abstract and give a presentation	9 th week	6% (Clarity, purpose and conclusion) 6% Presentation &Viva Voce
Introduction Background	Write an introduction and background sections	10 th week	5%(clarity)
Sections of the paper	Write the sections of your paper based on the classification/categorization diagram in keeping with the Goal so of your survey	11 th week	10% (this Component will be evaluated based on the linking and classification Among the papers)
Your conclusions	Write your conclusions and future work	12 th week	5% (conclusions– clarity and your ideas)
Final Draft	Complete the final draft of your paper	13 th week	10% (formatting, English, Clarity and linking) 4% Plagiarism Check

1

Approved by BoS Chairman

			Report
Seminar	A brief 15 slides on your paper	14 th & 15 th week	10% (based on presentation and Viva-voce)

	Course Outcomes: Students will be able to		
CO1	Survey the relevant information		
CO2	Outline the importance's		
CO3	Formulate the concept		
CO4	Compare the data's with existing		
CO5	Outline about concluding remarks		

 \mathcal{N} d 6

Approved by BoS Chairman

Professional Elective - I

Approved by BoS Chairman

M.E.	M23VDE301-VLSI TECHNOLOGY	L	Т	Ρ	С
		3	0	0	3

	Course Objectives
1.	To understand physical and chemical processes of IC fabrication technology.
2.	To learn the various lithography techniques and concepts of wafer exposure system.
3.	To understand Concepts of thermal oxidation and different solutions to diffusion equation.
4.	To Design and evaluation of diffused layers and ion implantation.
5.	To study the importance of calibration techniques for achieving precision during dataconversion.

UNIT-ICRYSTAL GROWTH, WAFER PREPARATION, EPITAXY
AND OXIDATION9Electronic Grade Silicon, Czochralski crystal growing, Silicon Shaping, processing consideration, Vapor
Phase Epitaxy, Molecular Beam Epitaxy, Silicon on Insulators, Epitaxial Evaluation, Growth Mechanism
And kinetics, Thin Oxides, Oxidation Techniques and Systems, Oxide properties, Redistribution of
Dopant At interface, Oxidation of Poly Silicon, Oxidation inducted Defects..9

UNIT-II

LITHOGRAPHY AND RELATIVE PLASMA ETCHING

9

Optical Lithography, Electron Lithography, X-Ray Lithography, Ion Lithography, Plasma properties, Feature Size control and Anisotropic Etch mechanism, relative Plasma Etching techniques and Equipments.

DEPOSITION, DIFFUSION, ION IMPLEMENTATION AND METALLIZATION

9

Deposition process, Polysilicon, plasma assisted Deposition, Models of Diffusion in Solids, Flick's one Dimensional Diffusion Equation – Atomic Diffusion Mechanism – Measurement techniques – Range Theory- Implant equipment. Annealing Shallow junction – High energy implantation – Physical vapors Deposition – Patterning.

Approved by BoS Chairman

UNIT-IV PROCESS SIMULATION AND VLSI PROCESS INTEGRATION

9

Natural response-Forced response-Transient response of RC,RL and RLC circuits to excitation by Step Signal, Impulse Signal and exponential sources, Complete response of RC, RL and RLC Circuits to sinusoidal excitation.

UNIT-V	ANALYTICAL, ASSEMBLY TECHNIQUES AND PACKAGING OF VLSI DEVICES	9	
Analytical E	Beams – Beams Specimen interactions - Chemical methods – Package types	– banking	
design consideration – VLSI assembly technology – Package fabrication technology			
	Total Instructional	l hours:45	

	Course Outcomes: Students will be able to
CO1	Understand the crystal growth and wafer fabrication.
CO2	Explain techniques used in lithography and plasma etching.
CO3	Design diffused layers and measurement methods.
CO4	Explain the simulation process and VLSI process integration.
CO5	Explain the techniques for assembly and packaging of ICs.

	Text Books	
1.	S.M.Sze, "VLSI Technology", McGraw Hill, 2nd Edition. 2008.	

	Reference Books			
1.	James D Plummer, Michael D. Deal, Peter B.Griffin, "Silicon VLSI Technology: fundamentals practice and Modeling", Prentice Hall India, 2009.			
2.	Wai Kai Chen, "VLSI Technology" CRC press, 2003.			

Approved by BoS Chairman

	M23AEE101-COMPUTERARCHITECTURE AND	L	т	Р	С
M.E.	PARALLEL PROCESSING (Common to AE&VLSI)	3	0	0	3

	Course Objectives		
1.	To study various types of processor architectures and the importance of scalable		
	architectures.		
2.	To introduce parallel processing and pipelining.		
3.	To learn about the memory hierarchy		
4.	To study the multiprocessor architecture		
5.	To study the multicore architecture		

	CY To	
UNIT-I	COMPUTER DESIGN AND PERFORMANCE MEASURES 9	
Fundament	tals of Computer Design – Parallel and Scalable Architectures – Multiprocessors-	-
Multi-vector	or and SIMD architectures – Multithreaded architectures – Stanford Dash	٦
multiproces	ssor – KSR1 - Data-flow architectures - Performance Measures.	

	× · · · · · · · · · · · · · · · · · · ·	
UNIT-II	PARALLEL PROCESSING, PIPELINING AND ILP	9
Instruction L	evel Parallelism and Its Exploitation - Concepts and Challenges - Pipelining proce	ssors
-Overcoming Data Hazards with Dynamic Scheduling – Dynamic Branch Prediction - Speculation -		
Multiple Issue Processors - Performance and Efficiency in Advanced Multiple Issue Processors.		

Memory Hierarchy - Memory Technology and Optimizations – Cache memory – Optimizations	UNIT-III	MEMORY HIERARCHY DESIGN	9
of Cach Performance – Memory Protection and Virtual Memory - Design of Memory Hierarchies.	Memory Hie of Cach P Hierarchies	erarchy - Memory Technology and Optimizations – Cache memory – Optimiz Performance – Memory Protection and Virtual Memory - Design of Mes.	ations emory

Approved by BoS Chairman

UNIT-IV	MULTIPROCESSORS	9		
Symmetric	and distributed shared memory architectures - Cache coherence issu	es –		
Performance Issues – Synchronization issues – Models of Memory Consistency				
Interconnection networks – Buses, crossbar and multi-stage switches.				

UNIT-V	MULTI-CORE ARCHITECTURES	9
Software ar	nd hardware multithreading – SMT and CMP architectures – Design issues –	Case-
studies –	Intel Multi-core architecture – SUN CMP architecture – IBM cell architect	ure-hp
architecture		
	Total Instructional ho	urs:45

	Course Outcomes: Students will be able to		
CO1	Explain the multiprocessors and its performance measure		
CO2	Explain the concept of parallel processing and pipelining		
CO3	Analyze about the memory hierarchy design		
CO4	Outline the issues related to multiprocessors		
CO5	Compare multicore architectures		
Text Books			
1.	A David E.Culler,JaswinderPalSingh,"Parallel Computing Architecture: A hardware		
	/software approach", MorganKaufmann / Elsevier,1997		
2.	Dimitrios Soudris, Axel Jantsch, "Scalable Multi-core Architectures:		
	Design Methodologies and Tools", Springer, 2012.		

Reference Books		
1.	Hwang Briggs, "Computer Architecture and parallel processing", McGrawHill, 1984.	
2.	JohnL.Hennessey and David A.Patterson," Computer Architecture— A quantitative	
	approach",MorganKaufmann/Elsevier,4th.Edition,2007.	

ん 1 5

Approved by BoS Chairman

	M23AET301-ADVANCED MICROPROCESSORS	L	т	Р	С
M.E.	AND MICROCONTROLLERS ARCHITECTURE (Common to AE & VLSI)	3	0	0	3

	Course Objectives
1.	To study 80486 and Pentium processor.
2.	To understand CISC and RISCArchitectures.
3.	To learn ARM processor.
4.	To learn ARM instruction set.
5.	To study about microcontroller.

	-YOND		
UNIT-I	80486 AND PENTIUM PROCESSOR	9	
80486 PR	DCESSOR: Basic programming model – Memory o <mark>rganizatio</mark> n – Data typ	es –	
Instruction set - Addressing mode – Address translation – Interrupts –PENTIUM PROCESSC			
Introduction to Pentium processor architecture – Special Pentium Registers– Pentium			
Memory Management – Introduction to Pentium pro processor – Pentium Pro Specia			
Features.	COIMBATORE		

UNIT-II	CISC AND RISC ARCHITECTURE	9			
Introduction to RISC architectures: RISC Versus CISC - RISC Case studies: MIPS R4000 -					
SPARC – Intel i860 - IBM RS/6000.					

UNIT-III	ARM PROCESSOR	9
ARM Programmer's Model – Registers – Processor Modes – State of the processor – Condition Flags – ARM Pipelines – Exception Vector Table – ARM Processor Families –		
Typical 3 stage pipelined ARM organization–Introduction to ARM Memory Management Unit,		
Case Study	<i>.</i>	

Ma B

Approved by BoS Chairman

UNIT-IV ARM ADDRESSING MODES AND INSTRUCTION SET 9

ARM Addressing Modes – ARM Instruction Set Overview – Thumb Instruction Set Overview – LPC210X ARM Processor Features, Case Study.

UNIT-V	PIC MICROCONTROLLER AND MOTOROLA 68HC11 MICROCONTROLLER	9
Instruction s	et, addressing modes – operating modes- Interrupt system- RTC-Serial Communic	cation
Interface – A/D Converter PWM and UART. MOTOROLA: CPU Architecture – Instruction set –		
interrupts- Timers- I2C Interfacing –UART- A/D Converter – PWM, Case Study.		
	Total Instructional ho	ours:45

Course Outcomes: Students will be able to		
CO1	Outline the basics of 80486 processor	
CO2	Explain the functionalities of CISC and RISC architecture	
CO3	Analyze the functionalities of ARM processor	
CO4	Outline ARM instruction set	
CO5	Explain PIC microcontroller and Motorola 68HC11 microcontroller	

Text Books					
1.	Andrew Sloss,"ARM System Developers Guide",Morgan K aufmann Publishers, 2005				
	approach",Morgan Kaufmann /Elsevier,1997.				
2.	BarryBBrey,"The Intel Microprocessor,Pentium and Pentium ProProcessor,Architecture				
	Programming and Interfacing", Prentice Hall of India,2002.				

Reference Books		
1.	Daniel T abak,"Advanced Microprocessors", McGraw Hill Inc., 1995.	
2.	David E Simon "An Embedded Software Primer ", Pearson Education,2007.	

Approved by BoS Chairman

M.E.	M23AEE103 - NEURAL NETWORKS	L	т	Ρ	С
	ANDAPPLICATIONS (Common to AE & VLSI)	3	0	0	3

Course Objectives		
1.	To introduce the artificial neural network concepts.	
2.	To study various types of artificial neural network architectures.	
3.	To study advanced artificial neural network concepts.	

UNIT-I	INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS	9
Neuro-physiology - General Processing Element - ADALINE - LMS learning rule - MADALINE		
– MR2 train	ing algorithm.	

UNIT-II	BPN AND BAM	9	
Back Propagation Network - updating of output and hidden layer weights -application of BPN —			
associative memory - Bi-directional Associative Memory - Hopfield memory -traveling sales man problem			

UNIT-III	SIMULATED ANNEALING AND CPN	9
Annealing,	Boltzmann machine - learning - application - Counter Propagation netw	ork -
architecture		

UNIT-IV	SOM AND ART	9
Self organizir Adaptive Res	ng map - learning algorithm - feature map classifier - applications - archite onance Theory - pattern matching in ART network.	cture of

Ma ø

Approved by BoS Chairman

UNIT-V	NEOCOGNITRON	9
Architecture of Neocognitron - Data processing and performance of architecture of spacio –		
temporal networks for speech recognition.		
	Total Instructional ho	ours:45

	Course Outcomes: Students will be able to
CO1	Explain the concepts of neural networks and different training / learning algorithms
CO2	Design BPNN to solve real time problems
CO3	Apply the concept of counter propagation network for various applications
CO4	Illustrate problem-solving based on pattern matching with specified Self Organizing Map algorithm
CO5	Apply spatial-temporal networks for speech recognition

Text Books			
1.	J.A.Freeman and B.M.Skapura,"Neural Networks, Algorithms Applications and Programming Techniques", Addison-Wesely, 2003.		
2.	LaureneFausett,"Fundamentals of NeuralNetworks: Architecture, Algorithms and Applications",PrenticeHall, 2004		

	Reference Books			
1.	Simon Haykin, "Neural Networks & Learning Machines", third edition Pearson Education 2011.			
2.	MartinT.Hagan,Howard B.Demuth,MarkBeale,"Neural Network Design",Thomson 2008.			

 \mathcal{N} 1 5

Approved by BoS Chairman

Professional Elective - II

Approved by BoS Chairman

9

		L T	т	Ρ	С
M.E.	M23VDE202-DSP INTEGRATED CIRCUITS	3	0	0	3

	Course Objectives
1.	To familiarize the concept of DSP and DSP algorithms.
2.	To introduction to Multirate systems and finite word length effects.
3.	To know about the basic DSP processor architectures.
4.	To study the synthesis of DSP architectures.
5.	To learn the processing elements of DSP architectures.

UNIT-I	INTRODUCTION TO DSP INTEGRATED CIRCUITS	9
Introduction	n to Digital signal processing, Sampling of analog signals, Selection of sa	ample
frequency, Signal- processing systems, Frequency response, Transfer functions, Signal flow		
graphs, Filter structures, Adaptive DSP algorithms, DFT-The Discrete Fourier Transform, FFT		
Algorithm,	Image coding, Discrete cosine transforms, Standard digital signal proces	sors,
Application	specific ICs for DSP, DSP systems, DSP system design, Integrated circuit des	ign.

DIGITAL FILTERS AND FINITE WORD LENGTH EFFECTS

FIR filters, FIR filter structures, FIR chips, IIR filters, Specifications of IIR filters, Mapping of analog transfer functions, Mapping of analog filter structures, Multi rate systems, Interpolation with an integer factor L, Sampling rate change with a ratio L/M, Multi rate filters. Finite word length effects - Parasitic oscillations, Scaling of signal levels, Round-off noise, Measuring round-off noise, Coefficient sensitivity, Sensitivity and noise.

UNIT-III

UNIT-II

DSP ARCHITECTURES

DSP system architectures, Standard DSP architecture-Harvard and Modified Harvard architecture. Ideal DSP architectures, Multiprocessors and multi computers, Systolic and Wave front arrays, Shared memory architectures

Approved by BoS Chairman

UNIT-IV	SYNTHESIS OF DSP ARCHITECTURES	9
Synthesis: M	apping of DSP algorithms onto hardware, Implementation based on comple	ex PEs,
Shared mem	ory architecture with Bit - serial PEs. Combinational & sequential networks-	Storage
elements – cl	ocking of synchronous systems, Asynchronous systems – FSM.	

UNIT-	ARITHMETIC UNIT AND PROCESSING ELEMENTS	9		
Conve	Conventional number system, Redundant Number system, Residue Number System, Bit- parallel and			
Bit-Se	Bit-Serial arithmetic, Digit Serial arithmetic, CORDIC Algorithm, Basic shift accumulator, Reducing the			
memo	memory size, Complex multipliers, Improved shift-accumulator. Case Study: DCT and FFT processor			
	Total Instructional ho	ours:45		

Course Outcomes: Students will be able to		
CO1	Outline the Digital Signal Processing concepts and its algorithms	
CO2	Explain the concept of digital filters	
CO3	Compare various DSP architectures	
CO4	Analyse the DSP processor architectures and synthesis	
CO5	Explain theprocessing elements and arithmetic unit	

Text Books			
1.	B.Venkatramani,M.Bhaskar, "DigitalSignalProcessors", TataMcGraw-Hill, 2002.		
2.	JohnJ.Proakis,DimitrisG.Manolakis, "DigitalSignalProcessing",PearsonEducation,2002.		

Reference Books				
1.	KeshabParhi, "VLSI Digital Signal Processing Systems design & Implementation", John Wiley &			
	Sons, 1999.			
2.	Lars Wanhammer, "DSP Integrated Circuits", Academic press, New York, 1999.			

 \mathcal{N} 1 5

Approved by BoS Chairman

9

		LT	т	Р	С
M.E.	(Common to VLSI & AE)	3	0	0	3

	Course Objectives
1.	To understand the semiconductor nano devices.
2.	To study the materials involved in nano devices.
3.	To learn the operation of nano thermalsensors.
4.	To understand various materials used in gas sensors.
5.	To study the operation of biosensor.

UNIT-I	SEMICONDUCTOR NANO DEVICES	9
Single-Elec	tron Devices; Nano scale MOSFET – Resonant Tunneling Transistor - S	ingle-
Electron T	ransistors; Nanorobotics and Nano manipulation; Mechanical Molecular	Nano
devices; Na	ano computers: Optical Fibers for Nano devices; Photochemical Molecular Devices	vices;
DNA-Based	Nano devices; Gas-Based Nano devices.	

UNIT-II

ELECTRONIC AND PHOTONIC MOLECULAR MATERIALS

Preparation – Electroluminescent Organic materials - Laser Diodes - Quantum well lasers:-Quantum cascade lasers- Cascade surface-emitting photonic crystal laser- Quantum dot lasers -Quantum wire lasers:- White LEDs - LEDs based on nanowires - LEDs based on nanotubes - LEDs based on nanorods - High Efficiency Materials for OLEDs- High Efficiency Materials for OLEDs -Quantum well infrared photo detectors.

UNIT-III

THERMAL SENSORS

Thermal energy sensors -temperature sensors, heat sensors - Electromagnetic sensors - electrical resistance sensors, electrical current sensors, electrical voltage sensors, electrical power sensors, magnetism sensors - Mechanical sensors - pressure sensors, gas and liquid flow sensors, position sensors - Chemical sensors - Optical and radiation sensors.

Approved by BoS Chairman

UNIT-IV	GAS SENSOR MATERIALS	9
Criteria for	the choice of materials – Experimental aspects— materials, proper	ties,
measureme	nt of gas sensing property, sensitivity, Discussion of sensors for various gases,	Gas
sensors bas	sed on semiconductor devices.	

UNIT-V	BIOSENSORS	9
Principles - applications	DNA based biosensors – Protein based biosensors – materials for bios - fabrication of biosensors - future potential.	ensor

Total Instructional hours:45

	Course Outcomes: Students will be able to		
CO1	Classify the types of Nano devices operation of bio sensor		
CO2	Analyze the materials used in Nano device		
CO3	Explain the operation of thermal sensor CO4:Examine the operation of gas sensor		
CO4	Examine the operation of gas sensor		
CO5	Outline the operation of bio sensor		

	Text Books
1.	K.E. Drexler,"Nanosystems", Wiley,1992.
2.	M.C.Petty,"Introduction to Molecular Electronics",1995.

	Reference Books		
1.	W.Ranier, "Nano Electronics and Information Technology ", Wiley, 2003.		

Approved by BoS Chairman

	M23AEE201- HIGH PERFORMANCE	L	т	Р	С
M.E.	NETWORKS (Common to AE & VLSI)	3	0	0	3

	Course Objectives		
1.	To introduce various systems related to networks.		
2.	To study the applications of multimedia networks.		
3.	To learn the concept of advanced networks.		
4.	To study the various traffic modeling.		
5.	To learn about network security in many layers and network management.		

UNIT-I	INTRODUCTION	9
Review of 0	DSI, TCP/IP; Multiplexing, Modes of Communication, Switching, Routing. SON	1ET –
DWDM – D	SL – ISDN – BISDN, ATM.	

UNIT-II	MULTIMEDIA NETWORKING APPLICATIONS	9
Streaming a	stored Audio and Video – Best effort service – protocols for real time inte	eractive
applications	- Beyond best effort - scheduling and policing mechanism - integrated served	vices –
RSVP- diffe	rentiated services.	

UNIT-III	ADVANCED NETWORKS CONCEPTS	9
VPN-Remot	e-Access VPN, site-to-site VPN, Tunneling to PPP, Security in VPN.MPLS- op	eration,
Routing, Tu	nneling and use of FEC, Traffic Engineering, MPLS based VPN, overlay network	s- P2P
connections		

UNIT-IV

TRAFFIC MODELLING

9

Little^{*}s theorem, Need for modeling, Poisson modeling and its failure, Non- poisson models, Network performance evaluation.

Approved by BoS Chairman

UNIT-V	NETWORK SECURITY AND MANAGEMENT	9
Principles o	f cryptography – Authentication – integrity – key distribution and certification –	Access
control and: fire walls - attacks and counter measures - security in many layers. Infrastructure for		ure for
network ma	nagement – The internet standard management framework – SMI, MIB, SNMP, S	Security
and adminis	tration – ASN.1.	
	Total Instructional ho	ours:45

	Course Outcomes: Students will be able to
CO1	Outline the basic high performance network systems
CO2	Explain the applications of multimedia networks
CO3	Analyse the concepts of advanced networks
CO4	Outline the traffic modelling
CO5	Analyse the network security methods

	Text Books
1.	AunuragKumar,D.MAnjunath,JoyKuri,"Communication Networking",Morgan Kaufmann Publishers,1 st Edition, 2004.
2.	Fred Halsall and Lingana Gouda Kulkarni, "Computer Networking and the Internet", fifth edition,Pearson Education, 2006.

	Reference Books	
1.	HersentGurle& Petit,"IPTelephony,packet Pored Multimedia communication Systems", Pearson	
	Education, 2003.	
2.	J.F.Kurose&K.W.Ross,"Computer Networking - A topdown approach featuring the	
	internet"Pearson,2 nd Edition,2003.	

 \mathcal{N} A 5

Approved by BoS Chairman

	M23AEE202 - WIRELESS ADHOC AND SENSOR	L	т	Р	С
M.E.	NETWORKS (Common to AE &VLSI)	3	0	0	3

	CourseObjectives		
1.	To understand the basics ofAd-hoc, Sensor Networks and various fundamental and emerging protocols of all layers.		
2.	To study about the routing architecture of sensor networks.		
3.	To understand the nature and applications of Ad-hoc and sensor networks.		
4.	To understand various security practices and protocols of Ad-hoc and Sensor networks.		
5.	To understand the basics of Ad-hoc,Sensor Networks and various fundamental and emerging protocols of all layers.		

UNIT-I	MAC & TCP IN AD HOC NETWORKS	9
Fundament	als of WLANs - IEEE 802.11 Architecture - Self configuration and	Auto
configuration-Issues in Ad-Hoc Wireless Networks - MAC Protocols for Ad-Hoc Wireless		eless
Networks –	Contention Based Protocols - TCP over Ad-Hoc networks-TCP protocol over	/iew -
TCP and MANETs – Solutions for TCP over Ad-Hoc Networks.		

UNIT-II	ROUTING IN AD HOC NETWORKS	9
Routing in	Ad-Hoc Networks- Introduction-Topology based versus Position based Appro	aches-
Proactive, R	Reactive, Hybrid Routing Approach-Principles and issues – Location services - DR	EAM –
Quorums ba	ased location service - Grid - Forwarding strategies - Greedy packet forwa	rding –
Restricted d	irectional flooding- Hierarchical Routing- Issues and Challenges in providing QoS.	

UNIT-III	MAC, ROUTING & QOS IN WIRELESS SENSOR NETWORKS	9
Introduction	- Architecture - Single node architecture - Sensor network design considera	tions –
Energy Efficient Design principles for WSNs - Protocols for WSN - Physical Layer : Transceiver		
Design considerations – MAC Layer Protocols – IEEE802.15.4 Zigbee – Link Layer and Error Control		Control
issues - Ro	uting Protocols - Mobile Nodes and Mobile Robots - Data Centric & Contention	Based
Networking	 Transport Protocols & QOS – Congestion Control issues – Application Layer sup 	port

Journa

Approved by BoS Chairman

UNIT-IV	SENSOR MANAGEMENT	9
Sensor Man	agement - Topology Control Protocols and Sensing Mode Selection Protocols	- Time
synchronizat	ion - Localization and positioning – Operating systems and Sensor N	Network
programmine	g – Sensor Network Simulators.	

UNIT-V	SECURITY IN ADHOC AND SENSOR NETWORKS	9	
Security in Ad-H	loc and Sensor networks – Key Distribution and Management – Software base	ed Anti-	
tamper techniqu	tamper techniques - water marking techniques - Defense against routing attacks - Secure Adhoc		
routing protocol	s – Broadcast authentication WSN protocols – TESLA – Biba – Sensor N	Network	
Security Protoco	ols – SPINS.		
	Total Instructional b	ours:45	

	Course Outcomes: Students will be able to
CO1	Explain the protocols developed for adhoc and sensor networks.
CO2	Analyse different routing approaches
CO3	Outline different architecture in ad hoc and sensor networks.
CO4	Build a Sensor network environment for different type of applications
CO5	Analyse about the security in sensor networks

	Text Books
1.	AdrianPerrig, J.D.Tygar, "Secure Broadcast Communication: In Wired and
	WirelessNetworks",Springer,2006.
2.	Carlos De MoraisCordeiro, Dharma Prakash Agrawal, "Ad Hoc and Sensor Networks: Theory and
	Applications (2 nd Edition),World Scientific Publishing,2011.

	Reference Books					
1.	1. C.SivaRam Murthy and B.S.Manoj, "AdHoc Wireless Networks-Architectures and					
	Protocols",Pearson Education,2004.					
2.	C.K.Toh, "AdHoc Mobile Wireless Networks", PearsonEducation, 2002.					

 \mathcal{N} 3 Ø

Approved by BoS Chairman

Professional Elective - III

Approved by BoS Chairman

9

	M23VDE204-SYSTEM ON CHIP DESIGN	L	т	Р	С	
M.E.	(Common to VLSI & AE)	3	0	0	3	

	Course Objectives					
1.	To introduce SoC concepts.					
2.	To study the system level modelling.					
3.	To learn the hardware/software co-design principles.					
4.	To familiar with system synthesis.					
5.	To learn the hardware/software co-verification principles.					

UNIT-I	INTRODUCTION	9		
Introduction	n to SoC Design, system level design, methodologies and tools, system hard	ware:		
IO, communication, processing units, memories; operating systems: prediction of executi				
real time scheduling, embedded OS, middle ware; Platform based SoC design, multiprocesso				
SoC and No	etwork on Chip, Low power SoC Design.			

UNIT-II

SYSTEM LEVEL MODELLING

SystemC: overview, Data types, modules, notion of time, dynamic process, basic channels, structure communication, ports and interfaces, Design with examples.

UNIT-III

HARDWARE SOFTWARE CO-DESIGN

Analysis, partitioning, high level optimisations, real-time scheduling, hardware acceleration, voltage scaling and power management; Virtual platform models, co-simulation and FPGAs for prototyping of HW/SW systems.

Approved by BoS Chairman

UNIT-IV	SYNTHESIS	9
System synth	esis: Transaction Level Modelling (TLM) based design, automaticTLM generation	tion and
mapping, plat	form synthesis; software synthesis: code generation, multi task synthesis, inter	nal and
external com	munication; Hardware synthesis: RTL architecture, Input models, estimati	on and
optimisation,	resource sharing and pipelining and scheduling.	

UNIT-V	SOC VERIFICATION AND TESTING	9
SoC and I	P integration, Verification: Verification technology options, verification method	dology,
overview: s	ystem level verification, physical verification, hardware/software co-verificatior	n; Test
requirement	s and methodologies, SoC design for testability - System modelling, test	power
dissipation,	test access mechanism, Case Study.	
	Total Instructional ho	ours:45

	Course Outcomes: Students will be able to					
CO1	Outline the basics of SoC design					
CO2	Explain the modelling process					
CO3	Analyse and design the software hardware models					
CO4	Explain the synthesis process					
CO5	Design the test mechanism for SoC test and verification					

	Text Books
1.	D.Black,J.Donovan, "System C:From the Ground Up", Springer,2004.
2.	D.Gajski,S.Abdi,A.Gerstlauer,G.Schirner, "Embedded System Design: Modeling, Synthesis, Verification", Springer,2009.

Reference Books								
1.	C.SivaRam Murthy and B.S.Manoj, "AdHoc Wireless Networks—Architectures and Protocols",							
	Pearson Edu	cation,2004.						
2.	ErikLarson,	"Introduction	to	advanced	system-on-chip	test	design	and
	optimization",	Springer,2005.						

Approved by BoS Chairman

UNIT-IV

M.E.	M23AET201-SOFT COMPUTING AND		т	Р	С
	OPTIMIZATION TECHNIQUES (Common to AE & VLSI)	3	0	0	3

Course Objectives				
1.	To understand various neural networks and learning methods.			
2.	To overview of Fuzzy logic.			
3.	To study the concept of Neuro–Fuzzy modeling.			
4.	To introduce the optimization techniques.			

UNIT-I	NEURAL NETWORKS	9	
Machine Learning using Neural Network, Learning algorithms, Supervised Learning Neu			
Networks – Feed Forward Networks, Radial Basis Function, Unsupervised Learning Neu			
Networks – Self Organizing map , Adaptive Resonance Architectures, Hopfield network.			

UNIT-II	FUZZY LOGIC	9		
Fuzzy Sets – Operations on Fuzzy Sets – Fuzzy Relations – Membership Functions-Fuzzy Rules and				
Fuzzy Reas	Fuzzy Reasoning – Fuzzy Inference Systems – Fuzzy Expert Systems – Fuzzy Decision Making.			

UNIT-III	NEURO-FUZZY MODELING	9
Adaptive Ne	euro-Fuzzy Inference Systems – Coactive Neuro-Fuzzy Modeling – Classification	
and Regres	sion Trees – Data Clustering Algorithms – Rule base Structure Identification –Ne	uro-Fuzzy
Control – Ca	ase Studies.	

CONVENTIONAL OPTIMIZATION TECHNIQUES

9

Introduction	to optimization	techniques,	Statement	of an	optimization	problem,	classi	fication,
Unconstrained	d optimization-	gradient seal	rch method-	Gradier	nt of a func	tion, stee	oest g	radient-
conjugate gra	adient, Newton'	s Method, N	/larquardt M	ethod,	Constrained	optimizatio	n –se	quential
linear progran	nming, Interior p	enalty functio	n method, ex	xternal p	penalty function	on method.		

ん 4 ø

Approved by BoS Chairman

UNIT-V	EVOLUTIONARY OPTIMIZATION TECHNIQUES	9
Genetic algo Travelling S	prithm - working principle, Basic operators and Terminologies, Building block hype alesman Problem, Particle swam optimization, Ant colony optimization.	othesis,
	Total Instructional he	ours:45

	Course Outcomes: Students will be able to				
C01	Outline the basics of neural network and learning methods				
CO2	Outline the basics of fuzzy logic				
CO3	Examine machine learning through Neural Fuzzy concept				
CO4	Explain the conventional optimization techniques				
CO5	Explain the evolutionary optimization techniques				

	Text Books
1.	DavidE.Goldberg, "Genetic Algorithms in Search, Optimization and Machine learning", Addison
	wesley, 2009.
2.	George J.Klir and BoYuan, "FuzzySets and FuzzyLogic-Theory and Applications", PrenticeHall,
	1995.

	Reference Books					
1.	James A.Freeman and David M.Skapura, "NeuralNetworks Algorithms, Applications, and					
	Programming Techniques",Pearson Edn.,2003.					
2.	Jyh-ShingRogerJang, Chuen-TsaiSun,EijiMizutani,"Neuro-Fuzzy and SoftComputing", Prentice-					
	Hall of India,2003.					

M 1A ABL

Approved by BoS Chairman

	M23VDE205 – RECONFIGURABLE	L	т	Р	с
M.E.	ARCH ITECTURES	3	0	0	3

	Course Objectives				
1.	To introduce processors and architectures.				
2.	To learn about programmed FPGAs.				
3.	To study various routing in FPGAs.				
4.	To introduce design styles for FPGA.				
5.	To familiar with SoPC designs.				

UNIT-I	INTRODUCTION	9	
Domain-spe	ecific processors, Application specific processors, Reconfigurable Comp	uting	
Systems - Evolution of reconfigurable systems - Characteristics of RCS advantages			
issues. Fundamental concepts & Design steps -classification of reconfigurable architectu			
fine, coarse grain & hybrid architectures – Examples.			

UNIT-II

FPGA TECHNOLOGIES & ARCHITECTURE

Technology trends- Programming technology- SRAM programmed FPGAs, antifuse programmed FPGAs, erasable programmable logic devices. Alternative FPGA architectures: Mux Vs LUT based logic blocks – CLB Vs LAB Vs Slices- Fast carry chains- Embedded RAMs- FPGA Vs ASIC design styles.

ROUTING FOR FPGAS

9

9

General Strategy for routing in FPGAs- routing for row-based FPGAs – segmented channel routing, definitions- Algorithm for I segment and K segment routing – Routing for symmetrical FPGAs, Flexibility of FPGA Routing Architectures: FPGA architectural flexibility on Routability- Effect of switch block flexibility on routability - Tradeoffs in flexibility of S and C blocks

Approved by BoS Chairman

UNIT-IV	HIGH LEVEL DESIGN	9
FPGA Des	gn style: Technology independent optimization- technology mapping- Placemer	nt. High-
level synth	esis of reconfigurable hardware, high- level languages, Design tools: Simulatio	n (cycle
based, eve	nt driven based) – Synthesis (logic/HDL vs physically aware) – timing analysis (static vs
dynamic)- v	verification physical design tools.	

UNIT-V	APPLICATION DEVELOPMENT WITH FPGAS	9
Case Studies	of FPGA Applications–System on a Programmable Chip (SoPC) Designs.	
	Total Instructional ho	urs:45

	Course Outcomes: Students will be able to
CO1	Illustrate the concepts of reconfigurable architectures
CO2	Explain the FPGA technologies
CO3	Analyze the various routing technologies
CO4	Explain the design styles of FPGA
CO5	Apply the FPGA techniques in solving the real world problems

			Tex	t Bo	oks		
1.	Christophe I	Bobda,	"Introduction	to	Reconfigurable	Computing	–Architectures,
	Algorithms and Applications", Springer, 2010.						
2.	. CliveMaxfield, "The Design						
	Warrior'sGuidetoFP0	GAs:Dev	vices,Toolsand	Flow	vs",Newnes,Elsevi	ier,2006.	

	Reference Books
1.	Jorgen Staunstrup,WayneWlf,"Hardware/Software Co- Design:Principles and practice",Kluwer
	Academic Pub, 1997.
2.	Maya B.Gokhale and PaulS.Graham, "Reconfigurable Computing: Accelerating Computation with
	Field-Programmable GateArrays",Springer,2005.

W 10 Ø

Approved by BoS Chairman

UNIT-I

9

M.E.	M23VDE206 - SIGNAL INTEGRITY FOR HIGH SPEED NETWORKS	L	т	Р	С
		3	0	0	3

	Course Objectives
1.	To study the various propagation requirements of transmission lines.
2.	To learn about the multiconductor transmission lines.
3.	To identify the non ideal effects of transmissionlines.
4.	To familiar about the design of transmission line system.
5.	To study the effect of oscillators in transmission lines.

SIGNAL PROPAGATION ON TRANSMISSION LINES

Transmission line equations, wave solution, wave vs. circuits, initial wave, delay time, Characteristic impedance , wave propagation, reflection, and bounce diagrams Reactive terminations – L, C, static field maps of micro strip and strip line cross-sections, per unit length parameters, PCB layer stackups and layer/Cu thicknesses, cross-sectional analysis tools, Zo and Td equations for microstrip and stripline Reflection and terminations for logic gates, fanout, logic switching , input impedance into a transmission-line section, reflection coefficient, skin-effect, dispersion.

UNIT-II MULTI-CONDUCTOR TRANSMISSION LINES AND CROSSTALK 9 Multi-conductor transmission-lines, coupling physics, per unit length parameters ,Near and far-end cross-talk, minimizing cross-talk (stripline and microstrip) Differential signalling, termination, balanced circuits ,S-parameters, Lossy and Lossless models. 9

UNIT-III	NON-IDEAL EFFECTS	
		9
Non-ideal sign	al return paths – gaps, BGA fields, via transitions , Parasitic inductance and capac	itance,
Transmission	line losses – Rs, tano , routing parasitic, Common-mode current, differential-mode	current
, Connectors		

Approved by BoS Chairman

UNIT-IV	POWER CONSIDERATIONS AND SYSTEM DESIGN	9
SSN/SSO ,	DC power bus design , layer stack up, SMT decoupling , Logic families,	power
consumptior	, and system power delivery , Logic families and speed Package types and p	arasitic
,SPICE, IBI	S models ,Bit streams, PRBS and filtering functions of link-path components	s,Eye
diagrams , ji	ter, inter-symbol interference Bit-error rate, Timing analysis.	

UNIT-V	СІ	OCK DISTR	RIBUTIO	N AND CLOC	KOSC	ILLATORS		9
Timing margin, Clock sl	ew, low	impedance	drivers,	terminations,	Delay	Adjustments,	са	nceling
parasitic capacitance, Clo	ock jitter.							
					Tota	I Instructional	l ho	ours:45

	Course Outcomes: Students will be able to
CO1	Make use of the wave propagation concepts
CO2	Explain about various parameters involved in wave propagation
CO3	Identify the various effects in wave propagation
CO4	Analyse the power issues, jitter and filtering in wave propagation
CO5	Analyse the clocking system for signal transmission

Text Books		
1.	DouglasBrooks,SignalIntegrityIssuesandPrintedCircuitBoardDesign,PrenticeHallPTR,2003.	
2.	EricBogatin,SignalIntegrity–Simplified,PrenticeHallPTR,2003.	

Reference Books		
1.	H.W.Johnson and M.Graham, High-Speed Digital Design: A Hand book of BlackMagic, Prentice	
	Hall,1993.	
2.	S. Hall, G. Hall, and J. McCall, High-Speed Digital System Design: A Handbook of Interconnect	
	Theory and DesignPractices,Wiley-Interscience,2000.	

Ma ABL

Approved by BoS Chairman